Carleson inequalities on parabolic Bergman spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carleson Measure Problems for Parabolic Bergman Spaces and Homogeneous Sobolev Spaces

Let bα(R 1+n + ) be the space of solutions to the parabolic equation ∂tu+ (−△)u = 0 (α ∈ (0, 1]) having finite L(R 1+n + ) norm. We characterize nonnegative Radon measures μ on R + having the property ‖u‖Lq(R1+n + ,μ) . ‖u‖ Ẇ1,p(R + ) , 1 ≤ p ≤ q < ∞, whenever u(t, x) ∈ bα(R 1+n + ) ∩ Ẇ 1.p(R + ). Meanwhile, denoting by v(t, x) the solution of the above equation with Cauchy data v0(x), we chara...

متن کامل

A Carleson-type Condition for Interpolation in Bergman Spaces

An analogue of the notion of uniformly separated sequences, expressed in terms of canonical divisors, is shown to yield a necessary and sufficient condition for interpolation in the Bergman space Ap, 0 < p < ∞. A sequence Γ = {zj} of distinct points in the open unit disk D = {z : |z| < 1} of the complex plane is a classical interpolation sequence if for every bounded sequence {aj}, there is a b...

متن کامل

Carleson Measures and Balayage for Bergman Spaces of Strongly Pseudoconvex Domains

Given a bounded strongly pseudoconvex domain D in C with smooth boundary, we characterize (p, q, α)-Bergman Carleson measures for 0 < p < ∞, 0 < q < ∞, and α > −1. As an application, we show that the Bergman space version of the balayage of a Bergman Carleson measure on D belongs to BMO in the Kobayashi metric.

متن کامل

Carleson Measure Theorems for Large Hardy-orlicz and Bergman-orlicz Spaces

We characterize those measures μ for which the Hardy-Orlicz (resp. weighted Bergman-Orlicz) space HΨ1 (resp. AΨ1 α ) of the unit ball of CN embeds boundedly or compactly into the Orlicz space LΨ2 ( BN ,μ ) (resp. LΨ2 (BN ,μ)), when the defining functions Ψ1 and Ψ2 are growth functions such that L1 ⊂ LΨ j for i, j ∈ {1,2}, and such that Ψ2/Ψ1 is non-decreasing. We apply our result to the charact...

متن کامل

Compact Operators on Bergman Spaces

We prove that a bounded operator S on La for p > 1 is compact if and only if the Berezin transform of S vanishes on the boundary of the unit disk if S satisfies some integrable conditions. Some estimates about the norm and essential norm of Toeplitz operators with symbols in BT are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 2010

ISSN: 0040-8735

DOI: 10.2748/tmj/1277298649